余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。
余弦函数:f(x)=cosx(x∈R)。
定义
角 的邻边比斜边 叫做 的余弦,记作(由余弦英文cosine简写),即 角 的邻边/斜边(直角三角形)。记作 。
余弦函数的定义域是整个实数集,值域是。它是周期函数,其最小正周期为。在自变量为(为整数)时,该函数有极大值1;在自变量为 时,该函数有极小值-1。余弦函数是函数奇偶性,其图像关于y轴对称。
三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即在余弦定理中,令,这时,所以。
(1)已知三角形的三条边长,可求出三个内角;
(2)已知三角形的两边及夹角,可求出第三边;
(3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。)
余弦定理
余弦定理亦称第二余弦定理。关于三角形边角关系的重要定理之一。该定理断言:三角形任一边的平方等于其他两边平方和减去这两边与它们夹角的余弦的积的两倍。若a、b、c分别表示∆ABC中A、B、C的对边,则余弦定理可表述为:
余弦定理还可以用以下形式表达:
第一余弦定理
设 的三边是,它们所对的角分别是,则有
两根判别法
若记m(c,c)为c的两值为正根的个数,c为c的表达式中根号前取加号的值,c为c的表达式中根号前取减号的值:
①若,则有两解;
②若,则有一解;
③若,则有零解(即无解)。
注意:若c等于c且c或c大于0,此种情况算到第二种情况,即一解。
角边判别法
1、当时:
①当(即A为锐角)时,则有两解;
②当(即A为直角或钝角)时,则有零解(即无解);
③当(即A为锐角)时,则有一解;
④当(即A为直角或钝角)时,则有零解(即无解);
⑤当时,则有一解。
2、当时:
①当(即A为锐角)时,则有一解;
②当(即A为直角或钝角)时,则有零解(即无解)。
3、当时,则有零解(即无解)。
证明方法
平面向量证法
∵ ,(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴。
又∵
∴(注意:这里用到了三角函数公式)
再拆开,得
同理可证其他,而下面的 就是将 C移到左边表示一下。
平面几何证法
在任意中,
做,交BC于D,
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a,
则有根据勾股定理可得:
三角恒等变换
二倍角公式
三倍角公式
半角公式
幂简约公式
和差化积公式
万能公式
其他
用其它三角函数来表示余弦
两个角的和及差的余弦
同角三角函数的基本关系式
倒数关系:
商的关系:
和的关系:
平方关系: